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Abstract: The method of moments is used to treat the general coloring problem of molecular and solid-state lattices. The 
results are used to illuminate the site preference problem in molecules and solids, the structures of transition-metal alloys, 
one-dimensional chain systems, and the stable substitution patterns of cyclobutadiene. 

I. Introduction 

One aspect of structural chemistry of fundamental importance 
is one which we will call the coloring problem. Consider a fixed 
molecular or solid-state framework (e.g., a square or the hep 
lattice) which is then populated with different sorts of atoms or 
atom groupings. Such a mapping of vertices to atoms is called 
a coloring, and the different atoms or units are associated with 
different colors. We require exactly one atom or atom grouping 
to lie at each vertex in the framework. In addition we require 
the coloring to maintain a specific stoichiometry. 

Examples of this problem are given in 1-3, the triatomic 
molecule, the square, and the bcc lattice. Their stoichiometries 

CsCI 3 CuTi 

are AB2, A2B2, and AB. There are only two possible colorings 
for 1 and 2 but an infinite number for the extended solid-state 
arrays of 3. For a unit cell of finite size, however, the number 
of possible colorings is finite.2 

A question which often interests chemists is which coloring has 
the lowest energy. We begin our analysis in a very general fashion 
as we wich to describe certain features present in all coloring 
patterns. We will then apply some of the techniques we have 
developed in the previous two papers3,4 in this issue to the problem 
in general and study two specific problems by using more tra
ditional methods for comparison. 

(1) Camille and Henry Dreyfus Teacher-Scholar. 
(2) For techniques available for the enumeration of the number of colorings 

of lattices see: (a) Moore, P. B.; McLarnan, T. J. In "The Structures of 
Complex Solids"; O'Keeffe, M., Navrotsky, A., Ed.; Academic Press: New 
York, 1981. (b) Burdett, J. K. Adv. Chem. Phys. 1982, 49, 47. (c) Burdett, 
J. K.; McLarnan, T. J. J. Chem. Phys. 1981, 75, 5764. 

(3) Burdett, J. K.; Lee, S. J. Am. Chem. Soc, first paper of three in this 
issue. 

(4) Burdett, J. K.; Lee, S. J. Am. Chem. Soc., preceding paper in this issue. 

II. Moments of Colored Patterns 

Within the confines of Hiickel theory (see the previous two 
papers in this issue for our use of this term), the coloring of 
different sites is basically the use of different a values for the 
orbitals concerned. We may simplify the problem further by 
assuming that the interaction matrix elements between the orbitals 
of the system (the Hiickel /S's) are independent of the type of atom 
in the system. (We will lift this restriction later.) Given this 
assumption, the earliest possible moment that may be different 
in two structures generated by different colorings is the third 
moment. Let us see if there are any restrictions on the values of 
H1 for various colorings. The walks are of the type shown in 4. 
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First we need to define an operation which relates two colorings 
of a system. For example, in the case of the square (cyclo
butadiene) system (2), there are two possible A2B2 colorings 

vertex 

1 2 3 4 

coloring S A A B B 
coloring T A B A B 

An obvious operation which connects these two colorings is the 
permutation (23). Thus we define 

(23)S = T (1) 

It can be seen that this sort of mapping may be used to relate any 
two colorings to each other. 

Another useful idea is that of a coordination environment which 
is independent of the types of atoms (colors) involved. Let atom 
1 be a vertex in some framework populated by a single orbital. 
We will define the coordination number c such that 

c, = EA1
2 (2) 

Here / runs over all orbitals in the framework and /3jk represents 
the interaction integral between the y'th and kth orbitals. We 
stressed the relationship between coordination number and the 
second moment of the energy density of states in the previous 
paper4 in this issue. 

OOO2-7863/85/15O7-3O83SO1.50/O ©1985 American Chemical Society 
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Figure 1. (a) Idealized [8,4] AuCd structure and (b) the [6,6] WC 
structure, two colorings of the hep lattice. (The real AuCd structure is 
a slight orthorhombic distortion of (a), and the WC structure need not 
be constrained to have an c/a ratio of (8/3)1''2. Large circles represent 
Au and W atoms; small circles are for Cd and C. Filled circles are at 
height z = 0, unfilled circules at height z = '/2. 

Proposition 1. Two colorings S and T have identical third 
moments if there exists a permutation P which only interchanges 
vertices of identical coordination during P(S) = T. [P itself may 
be written as a product of disjoint cycles P = PiP2Pi- • Each p, 
is made up of vertices with an identical coordination number, p, 
and Pj may contain vertices with a different coordination number.] 

Proof. S and T have the same number of 3-rings; so by the 
hypothesis that all /J^ are equal, their third moments can differ 
only because of the contributions of walks of the forms shown in 
in 4. The sum of all these contributions will be 

LAy2Ca7 + 2af) = E f t / a ; + 2 ZdJa1 (3) 

If we interchange the meanings of the dummy variables / and 
j in the first sum and use the fact that fy,- = /?,•,, we can write this 
as 

W « , + 2Lfl2«, = 3E/V«/ (4) 
iV; i*j iVy 

The coefficient of a,- in this sum is 

3E/V (5) 

Since the permutation taking S to T takes atom i to a site where 
the value of this sum is unchanged, the third moments of S and 
T must be equal. 

There are two important examples of colorings for which the 
above relationship holds, (i) For frameworks in which all the 
vertices have identical coordination number, all colorings have 
identical third moments. 2 and 3 are examples of this case, (ii) 
Let any coloring which does not change under an operation which 
permutes all of one color for all of another color be called self-
complementary. All such self-complementary colorings of a 
framework have identical third moments. Any self-complementary 
coloring must have stoichiometry AB, ABC, etc. Furthermore, 
each type of coordination environment must have the same 
stoichiometry. Therefore, there always exists a permutation which 
interchanges only identical coordination number vertices which 
connects two self-complementary colorings to each other. 2 and 
3 are two illustrative examples. 

III. Coloring of Lowest Energy 

In the previous two papers3,4 in this issue, we have suggested 
certain rules by which, from a knowledge of the earliest disparate 
moments of the energy density of states of two structures, it is 
easy to determine which variant has the lowest energy. These 
rules apply especially well to crystals, specifically for the cases 
we shall study in this paper. 

(1) When ^4 is the dominant moment, then at both low and 
high band fillings, the structure with the highest ^4 is most stable 
(5). Near the half-filled band, the structure with the lowest /x4 

5 

is stable (X is the band filling; empty, 0 < X < 1, full). Examples 
of this case may be found when /u3 is the same for both colorings 

Burdett, Lee, and McLarnan 

Table I. Known Structures of Transition Metal-Transition Metal 
Alloys" 

av no. 
of s + d 
electrons CsCl type 7-CuTi type AuCd type 

i ! TcTi, RuSc, ReTi, HfTc 
6.0 RhY, TcV, TaTe, RuZr, 

RuTi, RhSc, OsZr, 
OsTi, MnV, IrSc, Hf, 
Ru, CoSc 

6.5 RuV, PtSc, PdSc, OsV, 
NiSc, HfRh, CoZr, 
CoTi, CoHf 

7.0 AuLa, CuY, CuSc, AuY, PtTi, PdTi 
AuSc, AgY, AgSc, AgLa 

7.5 AgZr, AuHf, IrMo, IrW, 
AuTi, NbPt, PtV, 
CuTi, MoRh 
PdTa, 
AgTi 

8.0 
8.5 CoFe,' FeRh,' /3-MnPd 

10.5 /3-CuPd 
"From: Watson, R. E.; Bennett, L. H. Phys. Rev. 1978, 18, 6439. 

'Magnetic phases. 

as we have described in section II above. 
(2) When /J3 is the dominant moment, then at low band fillings, 

the structure with the highest |/x3| is stable. For high band fillings, 
the structure with the lowest \vi\ is stable (6). Examples of this 

/ Y x 
AE * Vn , 

6 

case will be found when the conditions described in section II are 
not applicable. 

The application of these ideas to the coloring problem lead to 
the following two propositions. 

Proposition 2. For those systems in which ^3 is the dominant 
moment, \n3\ may be maximized by placing the most electro
negative atom at the site with the highest coordination number.5 

Proof. By the proof of proposition 1, the part of the third 
moment which can vary from one coloring to another is 

3 L hfa (6) 

This is obviously maximized in absolute value by placing the most 
electronegative atoms (those with the largest negative a,) at the 
sites of highest coordination number. 

This is an important result. It suggests that the most stable 
structure for the heterotrihalide ions XY2", where the "band" is 
nearly full, is the one where the most electronegative atom lies 
at the end of the molecule. Thus, for example, we find Br-Br-Q" 
and not Br-Cl-Br". With fewer electrons, it predicts a changeover 

(5) In some cases it may not be clear which atom is more electronegative. 
For instance let the atoms A and B have the following atomic energy levels. 

SB 

SA 

A B 
We may resolve this difficulty by noting that eq 31 is linear in a and defining 
a function, proportional to the electronegativity, as the correctly weighted 
average of as and ap. 
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Figure 2. Calculated energy difference curve for the [8,0] CsCl and [4,4] 
CuTi transition-metal alloy structures as a function of the average total 
number of valence s + d electrons. The dashed lines show the experi
mentally observed occurrence of examples of the two colorings. 

of the stable triatomic isomer to the one with the most electro
negative atom in the middle. Thus, for 12 electron Ga 2O, the O 
atom is two-coordinate. N 2 O with four more electrons is found 
as N N O . We have discussed this triatomic problem by using more 
traditional ideas elsewhere.6 In the solid state, similar site reversals 
are found. It is the electronegative halide ions which occupy the 
three-coordinate sites in the cadmium halide structures, leaving 
the metal atoms six-coordinates. In the structure of Cs2O, which 
has the anticadmium halide structure, it is the electropositive Cs 
atoms which occupy the three-coordinate sites. There are many 
instances of structure-antistructure relationships of this type. 
Mg2Si has the antifluorite (CaF2) structure and Mg3Bi2 has the 
an t i -La 2 0 3 structure, for example. One particularly intriguing 
example is the relationship between the structures of the units 
in realgar, As 4S 4 (7) and S 4N 4 (8). In As4S4 , it is the more 

= S O = As 

7 
I = S O=N 

electronegative sulfur atoms which occupy the two-coordinate sites, 
leaving the arsenic atoms to occupy the three-coordinate sites. In 
S 4N 4 it is now the more electronegative nitrogen atoms which 
occupy the two-coordinate sites, leaving the sulfur atoms three-
coordinate. In the next proposition the concept of a bipartite 
framework is useful. A bipartite framework is one which contains 
no rings of odd length. 1-3, diamond, and graphite are all bipartite 
when one considers only first nearest-neighbor interactions. Cubic 
and hexagonal close packings are not bipartite.7 

Proposition 3. Let S and T be two AB colorings of a framework 
such that M3(S) = Hi(J) for the reasons given above. In addition, 
assume that the framework is bipartite. Then that coloring which 
maximizes nearest-neighbor A - A interactions (and hence max
imizes B-B, but minimizes A - B , interactions) is the one with the 
greater ^4 . 

Proof. The fourth moments of two colorings of a bipartite 
structure can differ only because of the contributions of paths of 

(6) Burdett, J. K.; Lawrence, N. J.; Turner, J. J. Jnorg. Chem. 1984, 23, 
2419. 

(7) In this vein a mineralogist might be tempted to comment that all ionic 
structures are bipartite or conversely that all bipartite structures are ionic! 

AE 
IeV) 

-.2 _ 

Figure 3. Calculated energy difference curve for the [8,4] AuCd and 
[6,6] WC transition-metal alloy structures as a function of the average 
total number of valence s + d electrons. The dashed line shows the 
experimentally observed occurrence of examples of the AuCd type. 

the types shown in 9. The total contribution of such paths to the 
fourth moment will be 

E / V ( 3 « , 2 + 2O1Oi3 + a/) (7) 

Just as in the proof of proposition 1, this can be written as 

4 ZPi1W + 2 Ztfapj 
t*J t*j 

(8) 

By the same argument as in proposition 1, the value of the first 
of these two sums will be the same for S and for T. Thus, the 
coloring with the largest /I4 will be the one with the largest value 
for the second sum. Since all /S1-,- are equal, this means that to 
maximize ^4 we must maximize 

E U1Uj (9) 
ij bonded 

Since S and T have the same number of A atoms and the same 
number of B atoms, the pattern of bonding in the two can differ 
only by one or more instances of the replacement of two A - B 
bonds in one coloring by one A - A and one B-B bond in the other. 
This changes the sum above by replacing 2 a A a B by « A 2 + «B2-
Because aA

2 + aB
2 > 2aAaB, this increases the sum and, therefore, 

increases ^4. Hence, minimizing the number of A - B interactions 
maximizes ^4 , as desired. 

«i/9a. 

/ 8 « / S a 1 fa*/J 

Finally we must consider the case where the third moment of 
the two colorings satisfies the relation H3(S) = ^3(T) and the lattice 
is not a bipartite one. If the structure of which S and T are 
colorings is not bipartite, then there is an additional contribution 
to the fourth moment from paths of the sort shown in 10. The 

10 
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Table II. Moments of AABB and ABAB Patterns 

ABAB (..ABAB...)0 

(a) all 0 equal 
Mi = 2(aA + aB) 
M2 = 2(aA

2 + aB
2 + A02) 

M3 = 2(aA
3 + aB

3 + 60 2 («A + aB)) 
M/ = 2 ( a / + aB

4 + 16[12]02 + 8/32(aA
2 + aB

2) + 8aAaB/?2) 
(b) all /3 equal, aA = a + S, aB = a - t> 

Mi = 4a 
M2 = 2(2a2 + 2a2 + A02) 
M3 = 2(2a3 + \2a02 + 6a52) 
M4" = 2(a" + 12a252 + 28* + 16[12I1S

2 + 802(3a2 + 52)) 
(c) unequal /3 

Mi = 2(aA + aB) 
M2 = 2(aA

2 + aB
2 + A0KB

2) 
M3 = 2(aA

3 + aB
3 + 6/3AB

2(aA + aB)) 

AABB (...AABB)" 
(d) all 0 equal 

Mi = 2(aA + aB) 
M2 = 2(aA

2 + aB
2 + 4/32) 

M3 = 2(aA
3 + aB

3 + 602(aA + <*B)) 
M4" = 2(aA

4 + aB
4 + 16[12]/32 + 10/32(aA

2 + aB
2) + 4aAaB/32) 

(e) all 0 equal, aA = a + S, aB = a - S 
M1 = Aa 
M2 = 2(2a2 + 2«2 + 4,32) 
M3 = 2(2a3 + 6ad2 + \2a02) 
M4" = 2(2a4 + 12a252 + 26" + 16[12]/32 + 8/32(3a2 + 252)) 

(f) unequal 0 
Mi = 2(aA + aB) 
M2 = 2(aA

2 + aB
2 + 2/3AB

2 + /?AA
2 + 0BB

2) 
M3 = 2(aA

3 + <*B
3 + 3/3AB

2(«A + aB) + 3(aA/3AA
2 + aB/3BB

2)) 
(g) unequal 0b 

AM 2 (ABAB - AABB) °c - (aA - aB)2 

AM 3 (ABAB - AABB) °c - 9(aA - aB)(aA
2 - aB

2) 

"Values for the linear chain in square brackets in M4- 'Assuming 0tJ 

ex (a ; + a). 

total contribution made by these paths to the fourth moment is 

L / 3 , ^ f c ( 2 a , - + CLJ + ak) = /33 E 4a,- (10) 
'V.* VJ.k) 

where the sums run over all ordered 3-rings (ij,k) in the structure. 
This can be rewritten as 4/3323iV(a,, where N1 is the number of 
ordered 3-rings at site ('. Since S and T are self-complementary, 
however, they both have equal numbers of A and B atoms in sites 
with a given value of JV1-. As a consequence, paths of the sort shown 
in 10 make an equal contribution to the fourth moments of S and 
T. Thus, proposition 3 holds for self-complementary colorings 
whether or not the underlying structure is bipartite. 

An interesting reversal of this result occurs if the two colorings 
have identical arrangements of first nearest neighbors but differ 
in the second coordination sphere. In this case there are two 
competing effects. The second nearest neighbors may be close 
enough such that the overlap integrals between the second nearest 
neighbors are significant. (An example of this is in the bcc lattice 
where second nearest neighbors are only 15% further away than 
first nearest neighbors.) When this occurs the coloring which 
maximizes M4 is the one with the largest number of like second 
nearest neighbors. The reader may readily show that the two 
ariangements ...ABABAB... and ...BBABAA..., which have 
identical nearest-neighbor environments for both atoms, is simply 
/3'2(aA - a B ) 2 ^ 0 where /3' is the interaction integral between 
second nearest neighbors. The latter arrangement is the one with 
the larger M4-

If second nearest neighbors are far away and thus the difference 
in M4 discussed above is small, then one must turn to the higher 
order moments n5 and n6. In such cases the walks which need 
consideration are those which traverse the first nearest neighbors. 
This is illustrated in 11. 

We note that in certain colorings, Ms differences will be zero 
and M6 w i ' l become the dominant moment. This parallels our 
previous discussion of M3 VS. M4- This parallel exists as the only 
change which has occurred in the addition of two extra steps. The 

2/8 

2/J 

" * > • 

Z0 

2/8 

r2y^§(|-4qf 

<3|3|-

'40 

first 
order 

second 
order 

second 
order 

| j ( l - 4 q ) 2 

3 4 ' 0 ^ 
inclusion 
of A/9 

Figure 4. Energy levels of substituted cyclobutadienes obtained via 
perturbation theory. Shown are the first- and second-order energetic 
changes (if not zero) and also the shift in the levels of the AABB coloring 
when the interaction integral is allowed to vary as in eq 15. 

Table III. Stabilization Energies of ABAB and AABB Substitution 

patterns ABAB 
AABB (no 

variation in 0) 
AABB 

(variation in 0)" 

two electrons6 

four electrons' 
six electrons'' 

«72/3 
(S2/20) + 2» 
b/20 

S2/0 
2b2/0 
57/3 

(b2l0)(\ + 2q)2 

(2&2/0)(l + Aq2) 
{52/0)(\ - 2<?)2 

"As defined in eq 7. 4AABB always more stable. CABAB more 
stable assuming perturbation is small. d AABB is more stable for q < 
0.146 or q > 0.854. The latter inequality is unlikely since q ~ Sy the 
i,j overlap integral. 

only effect of the two steps is to change \xn into M„+2- M3 becomes 
Ms while M4 turns into M6-

I s t nearest 
neighbor 

home-
atom 

2 n d nearest 
neighbor 

I s t nearest 
neighbor 

11 

We may use these ideas directly to view the structures of some 
alloys between two transition metals. 

IV. Transition-Metal Alloy Structures 

In the previous paper4 in this issue, we briefly examined some 
of the crystal structures of the transition elements and referred 
to the interesting observation that simple Huckel type ideas are 
able to reproduce the general trend in the variation of the lowest 
energy crystal structure as the series is traversed.8 In the case 
of alloys of the transition metals, little work has been done to date. 
However several of the structures of known alloys are of particular 
relevance to this paper. Often what is found for an AB alloy is 
a simple coloring (in two colors) of structures found for the pure 
metals. For example, the CsCl and CuTi structures are simply 
derivative structures of the bcc lattice (3). The AuCd and W C 

(8) See, for example: (a) Pettifor, D. G. CALPHAD: Comput. Coupling 
Phase Diagrams Thermochem. 1977, 1, 305. (b) Pettifor, D. G. In "Physical 
Metallurgy"; Cahn, R. W., Haasen, P., Ed.; North-Holland Publishing Co.: 
Amsterdam, 1984. 
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types (Figure 1) are two colorings of the hep lattice, and the CuAu 
and CuPt structures are two colorings of the fee lattice. 

Notice in 3 that the CsCl structure has only AB closest contacts 
whereas the CuTi structure has AA, AB, and BB contacts. 
Alternatively, we may regard the bcc structure as the stacking 
of 44 sheets of atoms on top of each other (up c) each sheet shifted 
(a + b)/2 relative to the one below it. In the CsCl structure, the 
layers are colored ABABAB and in the CuTi structure AABBAA. 
Examples of both CsCl and CuTi structures as the lowest energy 
structure at 0 K are found for transition-metal alloys (Table I). 
Notice the sharp demarcation line between the two structures at 
(the total number of valence electrons per atom) /Vv =* 7.25. 
Figure 2 shows the results of an extended Hiickel tight-binding 
calculation for these two structures. (The plot applies to "low-
spin", i.e., nonmagnetic alloys.) The calculation is the simplest 
one we could perform. It included d orbitals only on the two metal 
atoms. For electron-counting purposes, it is sufficient to realize 
that of the n s + d valence electrons in the elemental metals, one 
is essentially present as an s electron. This means that the 
half-filled band for the elements themselves occurs for the group 
6 (chromium) elements.21 In constructing the abscissa for Figure 
2 we have, therefore, "stretched" the range to run from 0 to 12 
other than from 0 to 109. With the exception of the asymmetry 
associated with the curve (which we will investigate below in 
section VI, the general shape of the energy difference function 
follows the pattern expected. The plot takes the form of 5, and 
it is the CsCl structure which is the one preferred at the half-filled 
point. This is the structure with the smallest number of A-A and 
B-B interactions. If we describe this structure in terms of the 
[number of like nearest neighbors, number of unlike nearest 
neighbors], then the CsCl structure is an [8,0] coloring but the 
CuTi structure a [4,4] coloring. The CsCl arrangement is 
therefore the one with the smaller nA and so the favored coloring 
at the half-filled point. Note that the calculated curve nicely 
reproduces the observed CsCl -» CuTi changeover at N, =* 7.25 
shown in Table I. 

We have also derived10 the result of Figure 2 by using a more 
traditional approach. The form of this curve may be obtained 
by using the energy levels at just two points ((0,0,0) and (V2, '/2, 
V2)) of a tetragonal Brillouin zone corresponding to a four atom 
unit cell. (A body-centered cubic derivative structure doubled 
along c). By examining in detail the level shifts of the bcc structure 
as a result of the two different colorings (much like the cyclo-
butadiene problem we show below in section VI), we may also 
understand the form of this curve. 

Figure 3 shows a calculated9 energy difference curve for the 
AuCd and WC structures shown in Figure 1. It is strikingly 
similar to that of Figure 2. For these two structures, there are 
not easily visualized planes of atoms stacked in a fashion analogous 
to those in 3. However, the two colorings are self-complementary 
and (with the restriction of constant /3 throughout) will have a 
zero third moment difference. The AuCd structure is a [8,4] 
coloring and the WC structure a [6,6] coloring. The former is 
therefore the structure favored at the half-filled point as confirmed 
by the numerical calculations shown in Figure 3 and by the ex
perimental observations of examples of this structure type shown 
in Table I. Notice the shift in the crossing point at high Ny for 
the AuCd/WC case compared to the CsCl/CuTi system. As 
described in the two previous papers in this issue, the crossing 
points in Ac (the stabilization energy as a function of Fermi 
energy), amenable to simple theoretical interpretation, are often 

(9) The effect of including s and p orbitals into the calculation is an 
interesting but complex one. Use of d + s orbitals for the elemental metals 
themselves leads to a "stretching" of the abscissa of Figure 16 of the previous 
paper4 with little change in functional shape. A similar effect occurs in Figures 
2 and 3 of this paper if the s orbital is not very diffuse. Use of s, p, and d 
orbitals in an extended Hiickel tight-binding calculation may change this 
picture depending upon the parameters used. A common feature is loss of the 
stability field for the ...AABB... pattern at high band fillings and in general 
significant changes in the predicted structures for TV, S 7. Some of the 
problems involved in sorting out this state of affairs are discussed in Burdett, 
J. K.; McLarnan, T. J. J. Solid State Chem. 1984, 53, 382. 

(10) We have spared the reader the details of this analysis. 

shifted on moving to AE (the stabilization energy as a function 
of band filling). 

The Cu3Au (12) and Al3Ti (13) structures are two colorings 
of the fee lattice. The first coordination shell of each structure 
contains the same number of like atoms, and thus the contribution 
to na, from first nearest-neighbor interactions is the same for both 
structures. In fact it has been shown11 that the first disparate 

Cu3Au 

13 

moment is the sixth for these two structures and that it is larger 
for the Cu3Au structure with like second nearest neighbors. This 
leads to an energy difference curve with four crossings, in 
agreement12 with structure maps containing experimentally known 
examples. 

V. Stacking Patterns in One-Dimensional Solids 

A one-dimensional example involves the stacking of donors (D) 
and acceptors (A) in integrated stacks.13 Our model here will 
be the simplest one could imagine where the energetics of the 
structures are determined by HOMO-LUMO interactions of the 
molecules. Two basic possibilities arise for the 1:1 stoichiometry, 
...ADAD... and ...AADD.... The former is known for many 
systems, the latter for only two. For the case where A and D are 
both closed-shell neutral species, then A - and D+ are the radical 
anion and cation, respectively. Two basic cases immediately arise: 
(i) the HOMO of D and the LUMO of A have the same symmetry 
species and may interact in an AD pair of some specified geometry, 
and (ii) the HOMO of D and the LUMO of A are of different 
symmetry in all likely stacking geometries and do not interact with 
each other. Case i is analogous to the simple one-dimensional 
chain example with one potent orbital per site. With two electrons 
per AD pair, the band is half full (if the electrons are paired) and 
the ...ADAD... arrangement predicted. If the interaction between 
A and D is weak compared to the two-electron terms in the energy, 
then a high-spin complex may result. In this case, the band will 
be full of unpaired electrons. Although our approach makes no 
predictions as to the most stable situation in such a case, note that 
the Madelung energy is minimized for the ...ADAD... arrange
ment. Case ii is more interesting. As shown in 14 and 15, the 
two orbitals (of symmetry T, and TJ) form two bands via inter
action with vacant (or full) orbitals on their partner. The result 

" \ 

JV 
14 

IV 

I k Ik 
\ . -Tl 

1U ^ ~ T i 

15 

(11) Bieber, A.; Ducastelle, F.; Gautier, F.; Treglia, G.; Turchi, P. Solid 
State Commun. 1983, 45, 585. 

(12) Bieber, A.; Gautier, F. Solid State Commun. 1981, 38, 1219. 
(13) For compreheisve reviews see: "Linear Chain Compounds"; Miller, 

J. R., Ed.; Plenum Press: New York, 1982-1983, Vols. I—III. 
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is that the bands of Ty and T,- symmetry are either one-fourth full 
(in 14) or three-fourths full (in 15), two situations which lead to 
an energetic preference for the ...AADD... structure. This elec
tronic and geometrical arrangement is found14 in PTZ-Ni(tfd)2. 
A similiar electronic situation is predicted if one of the species 
is a radical ion but the other a closed-shell molecule. In this case, 
the T,- (or Tj) manifold is empty. An example of this situation 
is found15 for NBP-TCNQF4. 

If the AD system is a triplet and not a singlet for the radical 
cation and anion case, or a doublet for the case of a single radical 
species, then these bands become half full of unpaired electrons 
and the ...ADAD... arrangement is favored. This is the case in16a 

Ni(tfd) rTTF (radical anion and cation) and16" Cu(tfd) rTTF 
(radical cation only). 

Another possibility arises, of course, if the orbitals on D and 
A, although of different symmetry, interact because the molecules 
are stacked in a skewed fashion. In such a case our approach needs 
to be qualified. 

VI. Cyclobutadiene and Changes in Interaction Integrals 

These results allow us to comment on an old molecular problem. 
How may singlet cyclobutadiene (C4H4), predicted to be Jahn-
Teller unstable at the square geometry, be stabilized by attaching 
donor (B) and acceptor (A) groups to give C4A2B2. The effect 
will be to depress the a values for the carbon orbitals adjacent 
to A and elevate the a values for the carbon orbitals adjacent to 
B. As far as the n manifold is concerned, it is simply the coloring 
problem of 2. The ABAB isomer, with, from our discussion above, 
the smaller value of ^4, is predicted to be more stable than the 
AABB isomer at the half-filled point, i.e., for C4H4 derivatives 
itself. Indeed all "push-pulP-substituted cyclobutadienes which 
have been made to date have this arrangement.17 This theoretical 
result was also obtained by using traditional orbital ideas several 
years ago.18 

It is instructive to consider the first four moments of these two 
molecular isomers shown in Table II. (The values for the ... 
ABAB... and ...AABB... linear chains are similar.) We also show 
their values relative to the unsubstituted molecule by writing aA 

= a + 5 and aB = a - 8. Notice that the fourth moment of both 
colorings is increased by this substitution. This is in direct contrast 
to our discussion in the previous paper4 in this issue of the Peierls 
and Jahn-Teller problem, where on distortion /u4 was reduced in 
magnitude. In the colorings of 2 the stabilization with respect 
to the parent appears in second order (Table II). 

In a more traditional vein we may simply generate the energy 
levels of such substituted cyclobutadienes by using perturbation 
theory. The results are shown in Figure 4 and the stabilization 
energy as a function of electron count is given in Table III and 
19 and is just as expected. One obvious restriction we have placed 

AE ' v ABAB 

/ 2 \ PTt-^ 

AABB 
16 

(14) (a) Singhabhandu, A.; Robinson, P. D.; Fang, J. H.; Geiger, W. E. 
Inorg. Chem. 1975, 14, 318. (b) PTZ = phenothazine, tfd = o'J-l,2-bis-
(trifluoromethyl)ethylene 1,2-dithiolate. 

(15) (a) Metzger, R. M.; Heimer, N. E.; Gundel, D.; Sixl, H.; Harms, R. 
H.; Keller, H. J.; Nothe, D.; Wehe, D. J. Chem. Phys. 1982, 77, 6203. (b) 
NBP = 5-(l-butyl)phenazinium, TCNQF4 = 2,2'-(2,3,5,6-tetrafluoro-2,5-
cyclohexadiene-l,4-diylidene)bis(propanedinitrile). 

(16) (a) Jacobs, I. S.; Hart, H. R.; Interrante, L. V.; Bray, J. W.; Kasper, 
J. S.; Watkins, G. D.; Prober, D. E.; Wolf, W. P.; Banner, J. C. Physica 
{Amsterdam) 1977, B+C 86-88, 1. (b) Kasper, J. S.; Moncton, D. E. Phys. 
Rev. B: Condens. Matter 1979, B20, 2341. (c) TTF = tetrathiafulvalene. 

(17) See, for example: Gompper, R.; Seybold, G. Angew. Chem. 1968, 80, 
804. 

(18) Hoffmann, R. Chem. Commun. 1979, 240. 

on the entire coloring problem so far is that the interaction integrals 
are independent of the atoms they join. This is clearly not true, 
but the simplification of the problem it produced was a useful one. 
In Figure 4 and Table III we show the effect of changing /3 during 
the perturbation. Specifically from the Wolfsberg-Helmholz 
relationship we have set 

0Ij = q(oti + aj) ( H ) 

where we have assumed q to be constant. (It will in practice be 
proportional to the ij overlap integral.) The energy levels of the 
ABAB isomer of Figure 4 remain unchanged when such a mod
ification is included, since all the contacts are AB ones. For 
AABB, however, some differences appear. As q increases, an 
interesting effect appears in the energy difference plot of 16. The 
high X stability field of the AABB isomer becomes less marked 
(17), and if q > 0.146, then it disappears altogether (18). For 

A ABAB 
AE AE 

P ^ 4 

AABB 

ABAB 

AABB 
17 18 

the infinite solid this sequence of plots is replaced by a series of 
smooth curves (19-21). We recognize the similarity between 

20 and the displays of Figures 2 and 3. An example of 21 is found 
in the structure of the (SN)x polymer 22, and its molecular 
analogue S2N2 (23) is an example of 18. Here the overlap 

22 
between sulfur and nitrogen is large, and so q is expected to be 
larger than in the transition-metal alloy cases we have just dis
cussed. Calculations on these transition-metal alloy structures 
show in fact similar behavior when the electronegativity difference 
between A and B increases.19 

Examination of Table II shows how this result can be viewed 
by using the moments approach. Notice how a small change 

^2 ^ 3 

24 

total AE 

(19) The crossover at q = 0.146 is suggestive of a difference in structure 
stability maps in the transition metal as opposed to main group element 
coloring problems. Recalling the Wolfsberg-Helmholz approximation q = 
Sij(,K/2) where K = 1.75, the crossover at the three-fourths filled mark comes 
at S1. = 0.167. Overlap integrals between transition-metal d orbitals are 
smaller than this (for example, S^dd) = 0.111 and 5,(dd) = 0.77 where the 
Fe atoms are held 2.44 A apart). Conversely overlap integrals between orbitals 
located on main group elements often are larger than 0.167 (for example, C 
with an exponent of 1.625 for its Slater p orbitals has SV(Pp) = 0.331 and 
Sx(Pp) = 0.144 where the C atoms are held 1.40 A apart). 

(20) Whangbo, M.-H.; Hoffmann, R.; Woodward, R. B. Proc. R. Soc. 
London, Ser. A 1979, A366, 23. 

(21) In this paper the periodic group notation is in accord with recent 
actions by IUPAC and ACS nomenclature committees. A and B notation is 
eliminated because of wide confusion. Groups IA and HA become groups 1 
and 2. The d-transition elements comprise groups 3 through 12, and the 
p-block elements comprise groups 13 through 18. (Note that the former 
Raman number designation is preserved in the last digit of the new numbering: 
e.g., Ill — 3 and 13.) 
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appears in the second moment difference if the /3,y are not all set 
equal and also a more sizeable change in the third moment. 24 
shows how the /U4 difference curve needs to be modified as a result. 
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Appendix 

Details of Numerical Calculations. The plots of Figures 2 and 
3 were obtained via an extended Hiickel based tight-binding 
method.8 The parameters for the two metals were single-f Slater 

The concepts of resonance theory and electronic delocalization 
occupy prime places in our conceptual thinking and chemical 
education.2 Owing to their very nature, concepts must occa
sionally be examined. Following this philosophy of reexamination, 
it was recently proposed3,4 that electronic delocalization is neither 
the driving force nor the root cause of the geometric features of 
"resonating" systems such as 1 and 2, etc.5 Rather, it was 

(1) Permanent address: Department of Chemistry, Ben-Gurion University, 
Beer Sheva 84105, Israel. 

(2) (a) Resonance theory is summarized in many textbooks. The following 
is a casual selection showing the importance of the concept in different 
branches of chemical education. Pauling, L. "The Nature of the Chemical 
Bond", 3rd ed.; Cornell University Press: Ithaca, NY, 1960. Lowry, T. H.; 
Richardson, K. S. "Mechanism and Theory in Organic Chemistry"; Harper 
and Row Publishers: New York, 1976. Levine, I. N. "Quantum Chemistry"; 
Allyn and Bacon, Inc.: Boston, 1965. Cotton, F. A.; Wilkinson, G. "Advanced 
Inorganic Chemistry"; Interscience Publishers: New York, 1966. (b) The 
concept of delocalization is common to resonance theory and MO theory. 
Although the concept is differently formulated, it occupies an important status 
in both theories, (c) The concept of "aromaticity" is thought to originate in 
the seminal works of Kekule and Couper. See: Kekule, A. Bull. Soc. Chim. 
Fr. 1865, 3, 98. Couper, A. C. R. Hebd. Seances Acad Sci. 1858, 46, 1157. 
See also: Wotiz, J. H.; Rudofsky, S. Chem. Br. 1984, 720. 

(3) Epiotis, N. D. Nouv. J. Chim. 1984, 8, 11. Epiotis, N. D. Lecture 
Notes Chem. 1983, 34, 358-371. Epiotis, N. D. Pure Appl. Chem. 1983, 55, 
229. 

(4) Shaik, S. S.; Bar. R. Nouv. J. Chim. 1984, 8, 411. 

d orbitals with an exponent of 2.10 for both atoms and Coulomb 
integrals of 9.1 and 11.1 eV. A total of 40 symmetry inequivalent 
k points were used for a primitive tetragonal unit cell (bcc de
rivative structure doubled along c). The validity of the plots of 
17 and 20 for S2N2 and the (SN)1 polymer was checked by 
performing calculations on the observed structures by using the 
geometrical and orbital parameters of ref 20 and then reversing 
the S and N sites. The new structure has shorter S-S distances 
and longer N-N distances than might be expected for a molecule 
or solid of this type. We did not allow these to relax however, 
since we have little faith in the ability of extended Htlckel cal
culations to correctly mimic the energetic changes associated with 
bond length variations. 

Registry No. Cyclobutadiene, 1120-53-2. 

suggested that electronic delocalization, in many organic species, 
is forced, and the "resonating" -K systems may well be unstable 
transition states trapped in a stiff a framework.3,4 

H 

I H^C^ H 

* = • ; - (1| 
1 2 

Since such propositions constitute antitheses to current ways 
of thinking and teaching, we have decided to initiate a quantitative 
study which is directed at two aims. The specific aim is to in-

(5) (a) Similar ideas based on Niickel theory with a variable 8 were 
expressed in the following: Longuet-Higgins, H. C; Salem, L. Proc. R. Soc. 
London, Ser. A 1959, A251, 172. Salem, L. "The Molecular Orbital Theory 
of Conjugated Systems"; W. A. Benjamin, Inc.: Reading, MA, 1972, pp 
103-106 and 494-505. (b) Electronic delocalization was shown not to be an 
important driving force in certain allyl-radical-type species: Feller, D.; 
Davidson, E. R.; Borden, W. T. /. Am. Chem. Soc. 1984, 106, 2513. Feller, 
D.; Huyser, E. S.; Borden, W. T.; Davidson, E. R. J. Am. Chem. Soc. 1983, 
105, 1459. Feller, D.; Davidson, E. R.; Borden, W. T. J. Am. Chem. Soc. 
1983, 105, 3347. Explanations were couched in terms of second-order 
Jahn-Teller effect and in terms of resonance theory, (c) Localization in some 
polyenic radicals was found by VB computations to prevail. See: Said, M.; 
Malrieu, J. P.; Bach, M.-A.G. /. Am. Chem. Soc. 1984, 106, 571. 

When Does Electronic Delocalization Become a Driving Force 
of Molecular Shape and Stability? The "Aromatic" Sextet 
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Abstract: The conceptual grasp of electronic delocalization vs. localization is reexamined computationally by using "aromatic" 
6-electron 6-center (X6) model species as archetypal systems. It is shown that the character and weights of the resonance 
structures, which contribute to the "aromatic" sextet, yield no differentiating information regarding the stabilities or geometries 
of the X6 species. A qualitative model is utilized to understand the physical basis behind the quantitative results. It is shown 
that the X6 systems must "pay a price" for electronic reorganization, while undergoing delocalization. The "price" depends 
on the identity of X in X6. Thus, whenever the X-X two-electron bond is strong (e.g., H-H), the price for electronic reorganization 
is too high. Such systems (e.g., H6) will prefer a geometry that prohibits delocalization of the electronic sextet. Among these 
systems is the suspended -K system, Li6(7r), that lacks a a skeleton and shows no propensity for ir delocalization. Only in a 
few cases will the price of electronic reorganization be low enough to afford delocalization of the electronic sextet. Such systems 
possess weak X-X two-electron bonds and will consequently tend to cluster in a regular hexagonal X6 structure—where electronic 
delocalization takes place. In view of these trends, a question mark is cast over the propensity of the x system of benzene 
to remain delocalized without the buttressing effect of the a framework. 
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